Gallium Nitride Offers Powerful Solutions in High Voltage Applications

2024-09-06 10:41:27 637

In the field of electrical engineering, the trend toward higher operating voltages is driven by the need for increased efficiency and power density in a variety of applications. Gallium Nitride (GaN) technology is emerging as a powerful solution to meet these needs.

In industrial environments, internal voltage rails are also moving up. These higher voltages are critical for delivering higher power in applications such as motor drives, compressors and large HVAC systems.

Rapidly growing consumer and industrial sectors in emerging economies are challenged by grid instability. Voltage fluctuations and line swells, often exacerbated by aging infrastructure, pose a significant threat to electronic systems.

Challenges of Silicon Devices in High Voltage Environments

All power devices have defined operating limits. For example, a 725 V silicon MOSFET can typically operate safely up to 650 V and derate to 725 V. Prolonged exposure to voltages higher than 725 V can lead to avalanche breakdown, resulting in localized heating and potential structural damage. Voltage spikes (such as lightning strikes or power supply wiring errors) and line swells due to grid instability can push these devices to their limits, leading to catastrophic failures.


Energy Loss - Gallium Nitride vs. Silicon

R = Conduction Loss - RDS(ON)
C = Switching Losses - COSS

Advantages of PowiGaN Technology in High Voltage Applications

In contrast, PowiGaN devices do not exhibit the avalanche breakdown mechanism inherent in silicon devices. Their internal cascade structure and high breakdown voltages (typically more than twice the rated voltage) allow them to withstand high voltage spikes and long-term line swell. These devices temporarily increase resistance during voltage spikes, reducing efficiency slightly, but recover quickly without significant impact on performance. Even under multiple spiking events or prolonged swell, PowiGaN devices maintain safe and efficient operation without degradation.

PowiGaN's role in future high-voltage applications

Power Integrations' recently introduced 1250 V PowiGaN device marks an important advancement. The devices allow 1000 V peak operation with significant derating, providing robust protection against grid instability and power disturbances. These devices are now moving into an area traditionally dominated by silicon carbide (SiC) devices, expanding their range of applications.

In summary, PowiGaN technology offers significant advantages in the face of grid instability in the current market. It ensures high-quality, reliable products in an expanding consumer market. In addition, PowiGaN's robust cascade structure and potential for higher voltage applications make it a key player in the future of power electronics.

Tags:

Share

Related News more>

ADAS Power Supply Challenges? 75% Capacitor Reduction Solution
As more and more edge intelligence technologies enter the mainstream, they demand increasingly lower power supply voltage rails to enable real-time local data processing. Applications such as ADAS, infotainment, and body electronics systems in automotive electronics widely adopt edge intelligence technologies. For such applications, the demands on power supply systems are growing increasingly stringent, presenting designers with significant challenges in developing next-generation systems. To support new ma....
Onsemi and NVIDIA Collaborate to Drive the Transition to 800V DC Power Supply Solutions for Next-Generation AI Data Centers
Shanghai, China - July 30, 2025 -- ON Semiconductor (NASDAQ: ON) announced a collaboration with NVIDIA to drive the transition to an 800V DC power supply architecture. This transformative solution will enable significant improvements in energy efficiency, density, and sustainability for next-generation AI data centers. Figure. 1 The core of this transformation is a new power distribution system—one that must efficiently distribute large amounts of power with minimal losses during each voltage convers....
EP4CE15F17C8N FPGAs: Features, Applications and Datasheet
EP4CE15F17C8N Description The EP4CE15F17C8N is a member of Intel (formerly Altera) Cyclone IV E FPGA family, designed for cost-sensitive and power-efficient applications while offering significant logic density and embedded memory. Fabricated on a 60 nm process, it provides a balance between performance, low static power, and affordability. The device is packaged in a FineLine BGA-256, optimized for compact board layouts. EP4CE15F17C8N Features Logic Elements (LEs): ~15,408 Embedded Memory: 516 Kbits dist....
Pushing the limits of performance: GaN enables high-frequency motor drives
Complex new technology applications such as humanoid robots place stringent demands on motor drives: the drives must provide precise control capabilities to ensure that speed, torque and efficiency remain constant. In recent years, these motor systems have developed rapidly, which is inseparable from technological advances and material innovations in the electronic power industry - many applications are transitioning from traditional silicon-based devices to advanced gallium nitride (GaN) solutions. GaN tec....